OTN – Lesson 9 – Video 2 – OTU Layer Source Direction – Part 2

This post presents the 2nd of 11 Videos that covers training on Performance Monitoring at the OTU-Layer. This post focuses on the Source-Direction OTU-Layer Atomic Functions.

OTN – Lesson 9 – Video 2 – OTU Layer Source Direction Circuitry/Functionality – Part 2

This blog post contains a video that discusses the OTU Layer Source Direction circuitry.  This video is the 2nd of 11 videos that focus on the OTU-Layer.

This particular video discusses the role/functionality of both the OTSiG/OTUk_A_So Atomic Function (aka OTL3.4 or OTL4.4 Source Terminal) and the OTSi/OTUk_A_So Atomic Function (for OTU1 and OTU2 applications).   

I will briefly describe the role of these atomic functions below.

Role of the OTSiG/OTUk_A_So Atomic Function

  • To insert the FAS/MFAS fields into the Outbound OTU3/OTU4 data-stream
  • Compute the FEC-field and insert it into the backend of each outbound OTU3 or OTU4 frame.
  • Scramble the outbound OTU3/OTU4 data-stream
  • Convert an OTU3 or OTU4 signal into an OTL3.4 or OTL4.4 set of signals, respectively.  
  • Forward this OTL3.4 or OTL4.4 set of signals to an Optical Module for further processing.  

Role of the OTSi/OTUk_A_So Atomic Function

  • To insert the FAS/MFAS fields  into the outbound OTU1/OTU2 data-stream
  • Computer the FEC-field and insert it into the backend of each outbound OTU1 or OTU2 frame.
  • Scramble the outbound OTU1/OTU2 data-stream.
  • Forward this scrambled (and FEC encoded) OTU1 or OTU2 data-stream to an Optical Module for further processing.  

Continue reading “OTN – Lesson 9 – Video 2 – OTU Layer Source Direction – Part 2”