Lesson 5/PT = 0x21/Summary ODUj Tributary Signal Mapping/Multiplexing into an ODU4 Server Signal

This blog post includes a video that summarizes all of our training on Mapping/Multiplexing ODUj Tributary Signals into an ODU4 Server Signal.

Summary/Review – Mapping/Multiplexing ODUj Tributary Signals into an ODU4 Server Signal (PT = 0x21)

This blog post includes a video that summarizes all of our training on Mapping/Multiplexing ODUj Tributary Signals into an ODU4 Server Signal, using the PT = 0x21 Approach.

In particular, we briefly summarize the following topics within this video.

  • A quick review of Mapping/Multiplexing schemes that use GMP (Generic Mapping Procedure)
  • Mapping and Multiplexing as many as 80 ODU0 Tributary Signals into an ODU4 Server Signal.
  • Mapping and Multiplexing as many as 40 ODU1 Tributary Signals into an ODU4 Server Signal
  • Mapping and Multiplexing as many as 10 ODU2 or ODU2e Tributary Signals into an ODU4 Server Signal
  • Mapping and Multiplexing as many as 2 ODU3 Tributary Signals into an ODU4 Server Signal
  • Mapping and Multiplexing some number of ODUflex Tributary Signals into an ODU4 Server Signal
  • A Discussion on why we logically subdivide ODU1, ODU2, ODU2e, ODU3 and ODUflex tributary signals into time-slots (when mapping/multiplexing into a Higher-Speed ODUk Server Signal), but we don’t do that for ODU0 tributary signals.
  • A Review of the MSI (Multiplex Structure Identifier) within the ODU4 Server Signal for each of these Mapping/Multiplexing Schemes.

You can view this video below

Continue reading “Lesson 5/PT = 0x21/Summary ODUj Tributary Signal Mapping/Multiplexing into an ODU4 Server Signal”

Lesson 5/PT = 0x21/Summary ODUj Tributary Signal Mapping/Multiplexing into an ODU3 Server Signal

This blog post contains a video that summarizes our training on Mapping/Multiplex ODUj Tributary Signals into an ODU3 Server Signal, using the PT = 0x21 Scheme.

Summary/Review – Mapping/Multiplexing ODUj Tributary Signals into an ODU3 Server Signal (PT = 0x21)

This blog post includes a video that summarizes all of our training on Mapping/Multiplexing ODUj Tributary Signals into an ODU3 Server Signal, using the PT = 0x21 Approach.

In particular, we briefly summarize the following topics within this video.

  • A quick review of Mapping/Multiplexing schemes that use GMP (Generic Mapping Procedure)
  • A quick review of Mapping/Multiplexing schemes that use AMP (Asynchronous Mapping Procedure)
  • Mapping and Multiplexing as many as 32 ODU0 Tributary Signals into an ODU3 Server Signal
  • Mapping and Multiplexing as many as 16 ODU1 Tributary Signals into an ODU3 Server Signal
  • Mapping and Multiplexing as many as 4 ODU2 Tributary Signals into an ODU3 Server Signal
  • Mapping and Multiplexing as many as 3 ODU2e Tributary Signals into an ODU3 Server Signal
  • Mapping and Multiplexing some number of ODUflex Tributary Signals into an ODU3 Server Signal
  • A Discussion on why we logically subdivide ODU1, ODU2, ODU2e, and ODUflex tributary signals into time-slots (when mapping/multiplexing into a Higher-Speed ODUk Server Signal), but we don’t do that for ODU0 tributary signals.
  • A Review of the MSI (Multiplex Structure Identifier) within the ODU3 Server Signal for each of these Mapping/Multiplexing Schemes.

You can view this video below

Continue reading “Lesson 5/PT = 0x21/Summary ODUj Tributary Signal Mapping/Multiplexing into an ODU3 Server Signal”

Lesson 5/PT = 0x21/3 ODU2e – Mapping/Multiplexing 3 ODU2e Tributary Signals into an ODU3 Server Signal

This post describes how we map/multiplexing as many as 3 ODU2e tributary signals into an ODU3 server signal, using the PT = 0x21 Approach.

Mapping/Multiplexing 3 ODU2e Tributary Signals into an ODU3 Server Signal (PT = 0x21)

This blog post includes a video that shows how we map and multiplex as many as 3 ODU2e Tributary Signals into an ODU3 Server Signal, using the PT = 0x21 Approach.

In particular, we discuss the following topics in this video.

  1. Subdividing the ODU2e signal into nine (9) separate 1.25 Gbps time-slots.
  2. Using the GMP (Generic Mapping Procedure) to map the ODU2e tributary signal into their respectively ODTU3.9 signal/frames.
  3. How to combine these ODTU3.9 signals together (along with other signals, such as ODTU3.1 and ODTU13 signals) into an ODU3 payload.
  4. Transporting the GMP Justification parameters from the Source PTE (where we map/multiplex these ODU2e tributary signals into an ODU3 server signal) to the Sink PTE (where we de-multiplex and de-map out the ODU2e tributary signals).
  5. Multiplex Structure Identifiers within this type of ODU3 server signal.

You can view this video below.

Continue reading “Lesson 5/PT = 0x21/3 ODU2e – Mapping/Multiplexing 3 ODU2e Tributary Signals into an ODU3 Server Signal”

Lesson 5/PT = 0x21/4 ODU2 – Mapping/Multiplexing 4 ODU2 Tributary Signals into an ODU3 Server Signal

This post describes how we map/multiplex as many as 4 ODU2 tributary signals into an ODU3 server signal using the PT = 0x21 Approach.

Mapping/Multiplexing 4 ODU2 Tributary Signals into an ODU3 Server Signal (PT = 0x21)

This blog post includes a video that:

  • Shows how we map and multiplex as many as 4 ODU2 Tributary Signals into an ODU3 Server Signal, using the PT = 0x21 Approach.

In particular, we discuss the following topics in this video.

  • Subdividing the ODU2 signal into eight (8) separate 1.25 Gbps time-slots.
  • Using the AMP (Asynchronous Mapping Procedure) to map the ODU2 tributary signal into their respectivey ODTU23 signal/frames.
  • How to combine these ODTU23 signals together and to map them into an ODU3 payload.
  • Transporting the AMP Justification parameters from the Source PTE (where we map/multiplex these ODU2 tributary signals into an ODU3 server signal) to the Sink PTE (where we de-multiplex and de-map out the ODU2 tributary signals).
  • Multiplex Structure Identifiers within this type of ODU3 server signal.

You can view this video below.

Continue reading “Lesson 5/PT = 0x21/4 ODU2 – Mapping/Multiplexing 4 ODU2 Tributary Signals into an ODU3 Server Signal”

Lesson 5/PT = 0x21/16 ODU1 – Mapping/Multiplexing 16 ODU1 Tributary Signals into an ODU3 Server Signal

This post describes how we map/multiplex as many as 16 ODU1 tributary signals into an ODU3 sever signal.

Mapping/Multiplexing 16 ODU1 Tributary Signals into an ODU3 Server Signal (PT = 0x21)

This blog post includes a video that:

  • Shows how we map and multiplex as many as 16 ODU1 Tributary Signals into an ODU3 Server Signal, using the PT = 0x21 Approach.

In particular, we discuss the following topics in this video.

  • Subdividing the ODU1 signal into two separate 1.25 Gbps time-slots.
  • Using the AMP (Asynchronous Mapping Procedure) to map the ODU1 tributary signals into their respective ODTU13 signal/frames.
  • How to combine these ODTU13 signals together and to map them into an ODU3 payload.
  • Transporting these AMP Justification parameters from the Source PTE (where we map/multiplex these ODU1 tributary signals into an ODU3 server signal) to the Sink PTE (where we de-multiplex and de-map out the ODU1 tributary signals).
  • Multiplex Structure Identifiers within this type of ODU3 server signal.

You can view this video below.

Continue reading “Lesson 5/PT = 0x21/16 ODU1 – Mapping/Multiplexing 16 ODU1 Tributary Signals into an ODU3 Server Signal”

Lesson 5/PT = 0x20/4 ODU2 – Mapping/Multiplexing 4 ODU2 Tributary Signals into an ODU3 Server Signal

This blog post presents a video on how to map/multiplex as many as 4 ODU2 tributary signals into an ODU3 server signal, using the PT = 0x20 approach.

Mapping/Multiplexing 4 ODU2 Tributary Signals into an ODU3 Server Signal using the PT = 0x20 Scheme.

This blog post includes a video that shows how we map and multiplex as many as 4 ODU2 Tributary Signals into an ODU3 Server Signal, using the PT = 0x20 Scheme.

In this video we discuss the following:

  • Sub-dividing an ODU2 tributary signal into its 2.5 Gbps time-slots.
  • Use the AMP (Asynchronous Mapping Procedure) to map each ODU2 tributary signals into an ODTU23 signal/frame.
  • How to combine these ODTU23 signals and map them into an ODU3 payload.
  • Transporting the AMP Justification Parameters from the Source PTE (where we map/multiplex the ODU2 tributary signals into the ODU3 server signal) to the Sink PTE (where we de-multiplex and de-map out the ODU2 tributary signals).
  • The Multiplex Structure Identifiers within this type of ODU3 signal.

You can view this video below.

Continue reading “Lesson 5/PT = 0x20/4 ODU2 – Mapping/Multiplexing 4 ODU2 Tributary Signals into an ODU3 Server Signal”