OTN – Lesson 10 – Handling Defects at the ODU-Layer – Defect Scenario Video

In this video, we presume that some ODUk- (or OTUk-) Layer circuitry is declaring a certain defect condition. We then determine how ODU-layer circuitry is expected to respond.

OTN – Lesson 10 – Handling Defects at the ODU-Layer – Defect Scenario for Multiplexed and Non-Multiplexed Applications

This video summarizes each of the various defects that OTN circuitry can declare/clear at the ODU-Layer.  

This video also describes how ODU-Layer circuitry is expected to respond to each of these ODU-Layer (or upstream OTU-Layer) defects.  

  • Should it transmit PM-BDI (Path Monitoring – Backward Defect Indicator) upstream?
  • Should it replace the under-lying 100oBASE-X or 100GBASE-R client signal with either the Link or Local Fault Indicator?  

NOTE:  This video covers both Non-Multiplexed and Multiplexed Applications.

Continue reading “OTN – Lesson 10 – Handling Defects at the ODU-Layer – Defect Scenario Video”

OTN – Lesson 10 – Video 5M – Conclusion of the ODUkP/ODUj-21_A_Sk Function

This post presents the 5th of the 6 Videos that covers training on the Peformance Monitoring of the ODUk Layer (for Multiplexed Applications). This post focuses on the Sink Direction ODU-Layer Atomic Functions.

OTN – Lesson 10 – Video 5M – Conclusion of the ODUkP/ODUj-21_A_Sk Atomic Function

This blog post includes a video that continues our discussion of the ODUkP/ODUj-21_A_Sk Atomic Function.  

In this case, we will now start talking about defects that this function declares within the Lower-Speed ODUj Tributary Signals, that it demultiplexes and demaps from the incoming ODUk Server Signal.

These defects include:

  • dMSIM[p] – Multiplex Structure Identifier Mismatch – for each ODUj Tributary Port signal, p, and
  • dLOFLOM[p] – Loss of Frame, Loss of Multi-Frame Defect (again) for each ODUj Tributary Port signal, p.  

NOTE:  We describe how the ODUkP/ODUj-21_A_Sk function declares and clears the dLOFLOM defect condition, as we walk through the dLOFLOM/In-Frame State Machine Diagram.  

Afterward, we discuss:

  • Defect Correlation Equations and Analyis, and
  • Consequent Equation Analysis

Finally, we wrap up and summarize the ODUkP/ODUj-21_A_Sk Function.

Continue reading “OTN – Lesson 10 – Video 5M – Conclusion of the ODUkP/ODUj-21_A_Sk Function”

OTN – Lesson 10 – Video 4M – ODUkP/ODUj-21_A_Sk Atomic Function

This post presents the 4th of the 6 Videos that covers training on the Peformance Monitoring of the ODUk Layer (for Multiplexed Applications). This post focuses on the Sink Direction ODU-Layer Atomic Functions.

OTN – Lesson 10 – Video 4 – Continuation with the ODUkP/ODUj-21_A_Sk Atomic Function

This blog post contains a video that continues our discussion of the ODUkP/ODUj-21_A_Sk Atomic Function.  Further, this video picks up (where we left off in Video 3) where we were discussing the need to maintain synchronization with the OMFI byte-field, and

It proceed to describe how the ODUkP/ODUj-21_A_Sk declares and clears the dLOOMFI defect condition, as we walk through the dLOOMFI/In-Multi-Frame State Machine Diagram.  

Continue reading “OTN – Lesson 10 – Video 4M – ODUkP/ODUj-21_A_Sk Atomic Function”

OTN – Lesson 10 – Video 3M – ODUkP/ODUj-21_A_Sk Function

This post presents the 3rd of the 6 Videos that covers training on the Peformance Monitoring of the ODUk Layer (for Multiplexed Applications). This post focuses on the Sink Direction ODU-Layer Atomic Functions.

OTN – Lesson 10 – Video 3 – The ODUkP/ODUj-21_A_Sk (The ODUk to ODUj Multiplex Sink) Atomic Function

This page contains a video that discusses the ODUkP/ODUj-21_A_Sk Atomic Function in detail.  

The purpose of this Atomic Function is to accept an ODUkP server signal, and de-multiplex and de-map out each of the various lower-speed ODUj tributary signals within this ODUkP server signal.  

And More….

Continue reading “OTN – Lesson 10 – Video 3M – ODUkP/ODUj-21_A_Sk Function”