OTN – Lesson 12 – Detailed Discussion of SNC/I Monitoring (Protection Switching)

This blog post presents a video that describes (in detail) SNC/I (Subnetwork Circuit – Inherent) Monitoring for Protection Switching.

Lesson 12 – Video 4 – Detailed Discussion of SNC/I (Subnetwork Circuit – Inherent) Monitoring for Protection Switching

This blog post contains a video that presents a detailed discussion of SNC/I Monitoring, both at the OTU and ODU layers.

In particular, this video will discuss the following topics:

  • How to perform SNC/I Monitoring at the OTU Layer
    • What Circuitry (Atomic Functions) that we should use
    • What defects to monitor
    • Which is the Normal Traffic Signal when doing SNC/I Monitoring at the OTU Layer.
    • What happens when we declare an OTU Layer Service-Affecting defect (dLOS, dLOF, dLOM, dLOL, dLOFLOM, dLOR, dAIS, and dTIM)?
    • What happens when we declare the SM-dDEG (OTU-layer Signal Degrade) defect?
    • How does protection-switching work?
  • How to perform SNC/I Monitoring at the ODU Layer
    • What Circuitry (Atomic Functions) that we should use
    • What defects to monitor
    • Which is the Normal Traffic Signal when doing SNC/I Monitoring at the ODU Layer.
    • What happens when we declare an ODUk Server-Layer service-affecting defects (such as dAIS, dOCI, dLCK, dTIM, dLOOMFI, and dPLM)?
    • What happens when we declare ODUj Tributary-Layer service-affecting defects (such as dLOFLOM and dMSIM)
    • What happens when we declare the PM-dDEG (ODU-layer Signal Degrade) defect?
    • How does protection-switching work?

Check Out the Video Below

Continue reading “OTN – Lesson 12 – Detailed Discussion of SNC/I Monitoring (Protection Switching)”

OTN – Lesson 10 – Video 7N – Extraction of a 100GBASE-R Client Signal from an ODU4 Signal

This post presents the 7th of the 7 Videos that covers training on the Peformance Monitoring of the ODUk Layer (for Non-Multiplexed Applications). This post focuses on the 100Gbps Ethernet Adaptation Sink Atomic Function, within the Sink Direction ODU-Layer Atomic Functions.

OTN – Lesson 10 – Video 7N – ODUkP/CBR_ETC100GR-g_A_Sk Atomic Function

This video discusses how the ODUkP/CBR_ETC100GR-g_A_Sk (100Gbps Ethernet Adaptation Sink) Atomic Function processes an ODU4 signal that it receives from the upstream ODUk_TT_Sk Function.  

In particular, this video discusses how this function terminates the ODU4 overhead, extracts out processes, and terminates the OPU4 overhead before it extracts and processes the 100GBASE-R client signal.

Continue reading “OTN – Lesson 10 – Video 7N – Extraction of a 100GBASE-R Client Signal from an ODU4 Signal”

OTN – Lesson 10 – Handling Defects at the ODU-Layer – Defect Scenario Video

In this video, we presume that some ODUk- (or OTUk-) Layer circuitry is declaring a certain defect condition. We then determine how ODU-layer circuitry is expected to respond.

OTN – Lesson 10 – Handling Defects at the ODU-Layer – Defect Scenario for Multiplexed and Non-Multiplexed Applications

This video summarizes the various defects that OTN circuitry can declare/clear at the ODU-Layer.  

This video also describes how ODU-Layer circuitry is expected to respond to each ODU-Layer (or upstream OTU-Layer) defect.  

  • Should it transmit PM-BDI (Path Monitoring – Backward Defect Indicator) upstream?
  • Should it replace the under-lying 100oBASE-X or 100GBASE-R client signal with the Link or Local Fault Indicator?  

This video answers these questions and more.  

NOTE:  This video covers both Non-Multiplexed and Multiplexed Applications.

Continue reading “OTN – Lesson 10 – Handling Defects at the ODU-Layer – Defect Scenario Video”

OTN – Lesson 10 – Video 6M – End of ODU-Layer/Multiplexed Sink Circuitry

This post presents the 6th of the 6 Videos that covers training on the Peformance Monitoring of the ODUk Layer (for Multiplexed Applications). This post focuses on the Sink Direction ODU-Layer Atomic Functions.

OTN – Lesson 10 – Video 6M – The ODU0_TT_Sk and ODUkP/CBR_ETC1000X_A_Sk Atomic Functions

This blog post contains a video that wraps up our discussion of the Sink (or Receive) Atomic Function circuitry for the ODU-Layer/Multiplexed Applications.  

More specifically, this video includes a discussion of the following Atomic Functions.

  • ODU0_TT_Sk Function, and
  • ODU0P/CBR_1000X-g_A_Sk Function

Continue reading “OTN – Lesson 10 – Video 6M – End of ODU-Layer/Multiplexed Sink Circuitry”

OTN – Lesson 10 – Video 3M – ODUkP/ODUj-21_A_Sk Function

This post presents the 3rd of the 6 Videos that covers training on the Peformance Monitoring of the ODUk Layer (for Multiplexed Applications). This post focuses on the Sink Direction ODU-Layer Atomic Functions.

OTN – Lesson 10 – Video 3M – The ODUkP/ODUj-21_A_Sk (The ODUk to ODUj Multiplex Sink) Atomic Function

This page contains a video that discusses the ODUkP/ODUj-21_A_Sk Atomic Function in detail.  

The purpose of this Atomic Function is to accept an ODUkP server signal and de-multiplex and de-map out each of the various lower-speed ODUj tributary signals within this ODUkP server signal.  

This atomic function will also check for each of the following defects within the ODUkP Server and ODUj Tributary Signals:

  • ODUkP Server Level
    • Service-Affecting Defects
      • dLOOMFI
      • dPLM
  • ODUj Tributary Level
    • Service-Affecting Defects
      • dLOFLOM[p]
      • dMSIM[p]

We will cover how the ODUkP/ODUj-21_A_Sk function declares and clears these defects.  And More….

Continue reading “OTN – Lesson 10 – Video 3M – ODUkP/ODUj-21_A_Sk Function”